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Introduction
The in vitro preparation of acute and cultured brain tissue is widely and suc-
cesfully used to study information processing at the level of single neurons and
synapses. Due to the isolated condition of these neurons, the investigation of
their functional interplay with an active network is strongly limited. To overcome
this restriction, we present two complementary experimental approaches for
embedding real cortical neurons in vitro into a virtual surrounding in virtu
provided by large-scale neural network simulations.

(A) In an experimental real-time feedback setup we established a reciprocal
connection between a living cortical neuron in vitro and a simulated neural
network in virtu, similar to [9]. While excitatory and inhibitory projections onto
the real neuron are mediated via current or conductance injection, the constant
monitoring of its membrane potential allows for the detection of each generated
action potential which is immediately transmitted to the postsynaptic partners
within the network. The real-time requirements limit size and complexity of the
simulated network.

(B) We generated excitatory and inhibitory synaptic inputs to a cortical neuron
in vitro through off-line simulations of large scale neural networks (Z [ \]
neurons). For each neuron in virtu we devised an ’integrate and fire’ model with
passive leak conductance. The network architecture features an anatomically
realistic local connectivity and matches the size of a cortical column [10, 6].
This enables us to investigate neuronal output statistics in response to con-
trolled quasi-realistic network input.

Discussion & Outlook
We have shown that a real-time interface between living neurons in vitro and a
computer simulation in virtu can be easily achieved with standard equipment.
The soft real-time system allows for the simulation of some hundreds of sparsly
connected neurons with reasonable temporal resolution. Our experimental
applications have demonstrated the usefulness of this technique for testing
predictions from model studies.

Neural network simulations mostly rely on current-based models of neurons
and synapses (e.g.,[2, 10]). Our results show that this typically leads to
unphysiologically strong positive and negative current transients which can
harm the neuron. From this we can conclude that conductance rather than
current is the better signal for intracellularly interfacing with living cells and that
hybrid networks should therefore rely on conductance-based neuron models [8].

Instead of interfacing via intracellular signals, other means of interacting with
the living nerve tissue could widen the scope of application. Dynamic photo-
stimulation [7, 11], for instance, could be used to stimulate brain tissue and to
evoke spatio-temporal input patterns to single neurons, while network activity
could be monitored extracellularly by means of multi-electrode-arrays (MEA) [5].

Hybrid networks can become a powerful tool to help clarify the mechanisms un-
derling the neural computation in biological networks. As yet, applications have
been limited to few examples. Thus, one future key issue will be to identify those
problems and scientific questions in the neurosciences that can successfully be
tackled with the hybrid approach of fusing virtual and biological systems.
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A Propagation of synfire activity in a hybrid in vitro - in virtu network

j Bidirectional Real-Time Communication
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We implemented an experimental setup (left) which allows for bidirectional
communication of analogue signals between real and virtual neurons in soft
real-time. A standard PC ( kl P III-500, 1GB) run under Linux performs the sim-
ulation of neural network models and controls the communication lines via a low
cost I/O card (National Instuments, PCI 1200). For simulation we use C m m code
based on the simulation environment SYNOD [3] (www.synod.uni-freiburg.de).

Here, we patched single neurons in layer V in the acute slice of rat somatosen-
sory cortex. Membrane voltage was sampled at 1 to 10 kHz. Spike events
were threshold detected before each simulation stepn op and processed by the
postsynaptic partners in the simulated network. Excitatory and inhibtory synaptic
input to the real neuron was modeled as postsynaptic current (or conductance)
and injected into the soma.

In this configuration we calibrated the soft real-time process by simulating
sparsely connected random networks for network size (number of neurons) and
time resolution of simulation (right). We required the soft real-time condition
(n op Zn o real) to yield a short term average temporal accuracy of 95%.

j Network Model With Embedded Synfire Chain
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The network model initially comprised a synfire chain [1] of 5 groups, each
consisting of 10 neurons. The projection from each group to the next was full
divergent-convergent, with the fifth group projecting back onto the first group,
thereby creating a loop. Synfire activity was initiated by strong simultaneous
input to all neurons of group 1.

One arbitrarily chosen I & F neuron in group 1 was then either removed from the
network or replaced by a cortical neuron (q ) in vitro. Parameters of group size
and synaptic strength were adjusted such that with only 9 neurons in the first
group propagation of synchronous spiking was unreliable.

Each neuron in virtu was modeled as a leaky-integrator (voltage-threshold -
55 mV, membrane time constant 10 ms) and received Poissonian background
from 10,000 presynaptic neurons (88% excitatory at 1 Hz, 12% inhibitory at
12.5 Hz) [4, 13]. PSCs were modeled by an r -function. To compensate for the
relatively small group size, we increased the synaptic weights of feed-forward
connections between the synfire groups, relative to the strength of background
synapses.

j Cortical Neuron Ensures Stable Propagation
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Repeated simulations with a group size of 10 I & F neurons leads to an infinite
propagation of synchronous spiking (stable atractor) upon simultaneous ignition
of the very first group.

When eliminating one single I & F neuron in the first group, however, we ob-
served an unstable behaviour. The synchronous activity eventually dies out after
a duration which varies across individual simulations (right) due to the random
realisations of Poissonian background input. In 18% of the cases propagation
terminated within the first loop.

Replacement of the missing 10th neuron in the first group (see connection
scheme) by a cortical neuron in vitro re-establishes stable propagation through-
out the duration of repeated simulations. Using identical Poissonian background
input without embedding the real neuron lead to a propagation failure after 66
cycles.

B Neuronal output statistics depending on dynamic network state

j Locally Connected Random Networks in virtu

0 100 200 300

0 100 200 300

0 100 200 300
−15

−10

−5

0

5

0 100 200 300
−15

−10

−5

0

5

0 100 200 300
−1.5

−1

−0.5

0

0.5

0 100 200 300
−1.5

−1

−0.5

0

0.5

A
S

Y
N

C
.

S
Y

N
C

.

n
A

n
A

time  (ms) time  (ms) time  (ms)

Population Rate Integrated Synaptic Current Injected Current

Here, we compare the spiking statistics of I & F neurons and that of real cortical
neurons receiving input from a network of about 100,000 neurons which is
modeled using a locally random connection scheme based on anatomical
studies [10, 6].

Different dynamic network states can be adjusted by control of external input
drive and relative synaptic weight of inhibition versus excitation [2, 10]. We
concentrated on two states, characterised by asynchronous irregular (upper)
and slow synchronous irregular (lower) spiking of the total population (left).
Synaptic input to several I & F neurons was monitored (middle), clipped and
scaled (right), and subsequently injected into the soma of a layer V pyramidal
neuron.

j Irregularity versus count variability
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We quantified trial-by-trial variability by the Fano factor FF and spiking irregularity
by the squared Coefficient of Variation CVs of the ISI distribution

FFt variance of count
mean count

CV2t variance of inter-spike intervals

(mean inter-spike interval)2

The theory of renewal processes predicts that both measures are, on average,
equal: FFt CVu . For both types of network input, asynchronous (middle) and
synchronous (right), the spiking statistics of the neurons in vitro showed good
agreement with the renewal assumption. Irregularity of firing is equal for both,
model and real neurons, and yielded rather high values compared to the case of
balanced shotnoise input (left) [12].
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